
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2013

DroidSpotter: A Forensic Tool for Android
Location Data Collection and Analysis
Jeffrey Alan Kramer
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Engineering Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Kramer, Jeffrey Alan, "DroidSpotter: A Forensic Tool for Android Location Data Collection and Analysis" (2013). Graduate Theses and
Dissertations. 13407.
https://lib.dr.iastate.edu/etd/13407

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F13407&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F13407&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F13407&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F13407&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F13407&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F13407&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=lib.dr.iastate.edu%2Fetd%2F13407&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/13407?utm_source=lib.dr.iastate.edu%2Fetd%2F13407&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

DroidSpotter: A forensic tool for Android location data collection and analysis

by

Jeff Kramer

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

Master of Science

Major: Information Assurance

Program of Study Committee:
Yong Guan, Major Professor

Doug Jacobson
Leslie Miller

Iowa State University
Ames, Iowa

2013

Copyright © Jeff Kramer, 2013. All rights reserved.

www.manaraa.com

ii

TABLE OF CONTENTS

 Page

LIST OF FIGURES ... iii

NOMENCLATURE .. iv

ACKNOWLEDGEMENTS .. v

ABSTRACT .. vi

CHAPTER 1 INTRODUCTION .. 1

CHAPTER 2 LITERATURE SURVEY .. 6

 Commercial Products .. 6
 Academic Work ... 6

CHAPTER 3 DROIDSPOTTER: DESIGN AND IMPLEMENTATION
DETAILS .. 8
 Overview of DroidSpotter ... 8
 Foundation of DroidSpotter .. 9
 Modifying the Android Source Code .. 12
 Finding location data ... 13
 Creating DroidSpotter ... 15

CHAPTER 4 CASE STUDIES .. 18

Twitter .. 18
 Google Maps ... 19

CHAPTER 5 DISCUSSIONS .. 21

CHAPTER 6 SUMMARY AND CONCLUSIONS ... 23

REFERENCES .. 24

www.manaraa.com

iii

LIST OF FIGURES

 Page

Figure 1 Growth of Android Applications between June 2012 and May 2013 2

Figure 2 Diagram of Android Architecture ... 3

Figure 3 Expected forensic process when using DroidSpotter 8

Figure 4 Emulator command used for DroidSpotter ... 11

Figure 5 Modified logcat output from Android emulator for Google Navigation .. 14

Figure 6 GUI for DroidSpotter created with Netbeans .. 15

Figure 7 My personal Twitter account’s SQLite database - 23229968.db 19

www.manaraa.com

iv

NOMENCLATURE

AOSP Android Open Source Project

VM Virtual Machine

APK Application Package File

OS Operating System

IDE Integrated Development Environment

www.manaraa.com

v

ACKNOWLEDGEMENTS

I would like to thank my committee chair, Dr. Yong Guan, and my committee

members, Dr. Doug Jacobson and Dr. Leslie Miller, for their guidance and support

throughout the course of this research.

In addition, I would also like to thank my friends, colleagues, the department

faculty and staff for making my time at Iowa State University a wonderful experience. I

want to also offer my appreciation to those who were willing to listen and help problem

solve with me while working on my research especially Benjamin Holland because,

without them, this thesis would not have been possible.

Finally, thanks to my family for their encouragement especially my mother for

her hours of patience, respect and love.

www.manaraa.com

vi

ABSTRACT

 Since the surge in popularity of Android smartphones, creating Android

applications and using location data in these applications have soared. Due to how

quickly Android applications are being created, it is difficult for companies who have

created forensics tools to keep updating their programs in a timely manner for

investigators to use. This has created a need for a forensics tool which allows forensic

investigators to analyze a new Android application themselves since, in most cases,

criminal investigations are a time sensitive matter. The purpose of this research is to

introduce a prototype for a tool which would allow investigators to identify where

important data is being stored on an Android device and update the forensics tool

themselves in order to assist other investigators in the future.

www.manaraa.com

1

CHAPTER I

 INTRODUCTION

 In the United States, 136.7 million people owned a smartphone (approximately

fifty-eight percent of the mobile market).[1] The major platforms currently in the

smartphone market are Google’s Android with fifty-two percent of the market, Apple’s

iOS with thirty-nine percent, BlackBerry’s BlackBerry OS with roughly five percent,

and Microsoft’s Windows Mobile OS with three percent. This translates to 71.1 million

Android mobile devices, 53.3 million iOS devices, 7.1 million BlackBerry devices, and

4.1 million Windows Mobile devices. As smartphones rise in popularity, it becomes

more important to be able to accurately analyze these devices for forensic evidence.

 Using location-based services has become increasingly popular in mobile

applications. Social media applications like Facebook, Twitter, and FourSquare use

location data to let users tell their friends where they are and what they are doing.

Fandango, Yelp, and Google Local are being used to find nearby attractions like

restaurants, movie theaters, hair salons, and more. MapQuest, Google Navigation, and

Google Maps help users navigate to a destination of their choice. All of these

applications use the GPS device in Android smartphones and have a possibility of

storing location data on the mobile device for future analysis by a forensics scientist.

 New applications for the Android platform are being released every day. Google

has a minimal screening process before they put applications on the Google Play market

meaning anyone can create and release an application on the Google Play marketplace.

According to AppBrain and Google, the Google Play market now has over 700,000

www.manaraa.com

2

applications. Due to this large number of applications, it would take an extremely long

amount of time to manually search all of these applications for location data. Not only

are there a large number of applications currently on the market, the number of

applications are growing every day. There can be anywhere from 15,000 to 37,500 new

applications on the Android Market every month.[2] The mobile forensic community

needs a toolset to keep track of where location data is being stored and to analyze new

applications when they are released for new files containing location data – these are the

problems this thesis hopes to address.

Figure 1. Growth of Android applications between June 2012 and May 2013

www.manaraa.com

3

Background

The Android System Architecture

The Android System Architecture Framework demonstrates how the different

components of the Android system interact with one another. There are four different

layers to the Android architecture: the Applications, Application Framework, Libraries,

and Linux Kernel.[4] Each section relies on another to carry out an operation on the

Android device. Android applications, shown in the first layer, are written in Java and

run within a Dalvik virtual machine on the mobile device. The application frameworks

are skeletons for Android developers to utilize. Through these frameworks, a developer

Figure 2. Diagram of the Android Architecture

www.manaraa.com

4

can access all the framework APIs to manage the phone’s basic functions like tracking

the phone’s location, switching between processes, and more. In our case, we will be

focusing on the Location Manager since it is in charge of the device’s GPS and wireless

location data. The library layer consists of different Android libraries written in C and

C++. These library allow the device to properly handle certain types of data like SQLite,

graphics, and secure sockets layer (SSL). The Linux kernel provides all of the hardware

drivers and provides Android’s memory management, power management, and other

low level functionality.

Android partitions

Another aspect of Android we must understand is how the data is partitioned.

There are eight partitions in total: boot, system, recovery, data, cache, misc, sdcard, and

sd-ext.[5] The boot partition allows the Android device to boot and includes the kernel

and ramdisk. There is no valuable data which should be retrievable from this partition

since applications will not be saving to it.

The system partition contains the entirety of the operating system including

components like the user interface and system applications which come pre-installed

from the manufacturer. Since the system partition contains Android applications on it, it

will be of interest to us and should be investigated. The recovery partition is basically a

backup partition which allows you to boot into the recovery console to perform recovery

and maintenance on the device.

www.manaraa.com

5

The data partition, also called userdata, contains any user data stored on the

device such as contacts, messages, and any installed applications from the Google Play

market. Applications will use this partition to store any data needed for future use. This

partition will be of interest when we are looking for location data. The cache partition

contains data Android frequently accesses and certain app components. This partition

could potentially have location data if a user is frequently in the same place or the data

was recently created. The misc partition contains miscellaneous system settings like

CID, USB configuration, and other hardware settings. The misc partition should not

contain any location data and will not be analyzed.

The sdcard and sd-ext are both partitions pertaining to the SD card if the device

has one. Android devices can have an internal and external SD card. If this is the case,

the sdcard partition will always refer to the internal SD card. The sdcard partition can

store anything the user wishes such as documents, media, custom ROMs, and more. The

sd-ext partition is used mainly by custom ROMs as another data partition. This can be

used to install more applications than normally possible with only the memory available

internally. The sdcard partitions will be analyzed in case an application develop decides

to store data on these partitions. In conclusion, the data, system, cache, and sdcard

partitions will be of interest during our search for location data being saved on an

Android device.

www.manaraa.com

6

CHAPTER II

 LITERATURE SURVEY

Commercial Products

 Due to the popularity of Android, professional tools have been created to do

forensic analysis for police work and courtroom evidence. Mobile Phone Examiner

PLUS (MPE+) created by AccessData is one such toolkit.[6] The MPE+ has a large

number of useful features like searching for emails, contacts, and phone numbers. It can

automatically recognize certain applications like Facebook, Twitter, LinkedIn, etc. and

grab data from them. However, it does not have the ability to do analysis on new

applications and requires investigators to wait for the company to update their software

or go through the analysis process themselves.

 viaExtract is another tool created by viaForensics.[7] This tool also has a large

number of features like being able to bypass the lock (if adb is enabled on the device),

recovery of call logs, contacts, browser history, etc., and more. viaExtract allows an

investigator to save all of their data onto an external SD card similar to MPE+.

However, there is no tool to allow the investigator to examine new applications.

Academic Work

 There have been other efforts in the academic world concerning Android

forensics. One study, by Chen, Yang, and Liu [8], created a tool placed on an SD card

and would insert the card into the Android device they wanted to investigate. This tool

www.manaraa.com

7

would copy forensic data from the phone onto the SD card. However, this tool requires

usage of Fastboot (HBoot) mode and an SD card slot on the phone, an SD card, and a

computer with an SD card reader to do analysis. DroidSpotter only requires the device

to have the Android operating system and a computer capable of running a virtual

machine.

Rochester Institute of Technology’s Justin Grover created a tool called

DroidWatch as a result of his research on “Automated Data Collection and Reporting

from a Mobile Device”.[9] This research involved creating an Android application

which would send data on the device to another system via HTTP. This research was

focused on monitoring a device. DroidSpotter wants to retrieve data from a phone which

is currently in custody of a forensics examiner and be able to determine the location

history of a suspect.

www.manaraa.com

8

CHAPTER III

 DROIDSPOTTER: DESIGN AND IMPLEMENTATION DETAILS

Overview of DroidSpotter

 The main goal of DroidSpotter is to allow forensic scientists the ability to narrow

down the number of possible locations of location data from unanalyzed applications on

an image of an Android partition copied from its original hard drive. This analysis is

made possible by the Android Open Source Project’s emulator. This functionality will

be combined with a Java program backed by a MySQL database which will keep track

of where data has been found and allow scientists to update the database for future use.

A virtual machine will be used to hold all of the portions of this project in order to keep

researchers safe from malware. Figure 3 shows a visual representation of the expected

forensic process an investigator would go through when using DroidSpotter.

Figure 3. The expected forensic process when using DroidSpotter

www.manaraa.com

9

Foundation of DroidSpotter

 Several steps were taken before beginning to create the forensic tool

DroidSpotter. The first step involved creating sample location data on an Android

device in order to ensure the data being found in the research was valid. The second step

was creating a virtual machine to host the Java program and emulator. The third and

final step was downloading and getting the Android Open Source emulator to compile.

Creating sample location data

In order to know the process was capable of gathering data from an Android

device, sample data was created using a Motorola RAZR MAXX smartphone.

Applications like Google Latitude, Facebook, Twitter, and more were used to report its

location in various ways on the device. The phone was then rooted via a process

detailed on the XDA Forums. Applications like SSHDroid for Android and WinSCP for

Windows were used in order to transfer the files to a desktop computer for analysis.

Once the files were transferred to a desktop computer, they were manually analyzed the

files for GPS data. After the existence of location data being saved in files on the mobile

device was confirmed, the next stage of the implementation of the tool could start:

creating a tool to identify the location of GPS data files on Android devices.

Virtual machine

Since the goal of this project was to create a professional forensics tool, the decision to

host the tool on a virtual machine using VMWare’s vSphere client was beneficial for

www.manaraa.com

10

many reasons. Virtual machines are usable on most operating systems which means any

organization or company who decides to use the tool or further build upon it will not

have to buy new equipment in order to do so. Virtual machines use very little resources

on the host operating system which means an organization can host the VM on a server

and access the VM with most modern computers. A virtual machine also allows room

for error. If a developer is unsure about the ramifications of a certain action or code

change they are about to make, they can simply take a snapshot and revert to it if the

results are unfavorable.

Emulator

Creating an Android device on a desktop is possible through the use of the

Android Open Source Project (AOSP).[10] Google has made the Android source code

publically available for developers to use and modify for their own purposes. During my

first attempt at compiling the Android source code, the Ubuntu 12.04 operating system

was being used. However, it is only experimentally supported. The code compilation

was consistently giving errors so Ubuntu 10.04 was used instead. There are two options

you must choose for building an Android emulator: the build and the build type. For the

build, there are three options – full, full_maguro, and full_panda. The decision to use

the full option was made because it is configured to work with all languages, apps, and

input methods. The buildtype options are user, userdebug, and eng. The eng option is a

development configuration which allows for additional debugging tools. The eng option

www.manaraa.com

11

seemed most fitting since additional debugging tools may be needed during the

development process.

In order to get the Android source code to compile and run, several steps must be

taken. First, the envsetup.sh script is run to setup the environment variables for the

emulator. Second, the lunch command is run with the desired build and build types

specified. Third, the make command is run to recompile any code which has been

modified since the last run of the emulator. Finally, the emulator command is run.

There are several different options for the emulator command. Here are the

options in the emulator used for this tool:

The emulator portion is simply the name of the command itself. Any of the other

options which contain locations are relative to the /home/jeff/WORKING_DIRECTORY

folder. The –sysdir option specifies the location of the system directory which is

out/target/product/generic in this case. The –system option specifies the location of the

system.img file which is created after the source code is compiled and made. The –

ramdisk, -data, and –sdcard options specify the location of their respective image (.img)

files. –Kernel specifies the location of the kernel for the emulator. –Skindir specifies

where the skins for the emulators are located which make the emulator to look like

specific devices. The –skin option is a specific example of one of these skins. The –

memory option specifies how much RAM the emulated device should receive and the –

Figure 4. Emulator command used for DroidSpotter

www.manaraa.com

12

partition-size option states how much hard drive space the emulator partition will be

allocated. The above options is the configuration used to run the emulator on the virtual

machine.

 The –logcat option tells the emulator the user wants to view the output from

logcat as the emulator is running. There are seven different priorities for logcat and each

priority has its own letter code: Verbose (V), Debug (D), Info (I), Warning (W), Error

(E), Fatal (F), and Silent (S). Verbose is the lowest priority meaning every log message

will be outputted. Since the messages output by this tool are not considered high

priority, the Verbose tag is used when outputting information about when the Location

API is called. These modifications will be shown in more detail later. The output of

logcat is piped into the grep command so only the relevant output will be displayed.

Modifying the Android source code

Once the code was compiling properly, it was time to modify the Android source

code to have it report when the Location API calls are being made. In the Android

source code, there is a Location package with several classes. The most important ones

are the Location, LocationManager, and LocationProvider classes.

The Location class is an object used to represent a geographical spot on the

globe. A Location consists of a latitude, longitude, timestamp, and other information

such as bearing, altitude, and velocity. This is good since this means every Location

object will have coordinates and an associated timestamp. This will allow us to know

where the phone was and when the Location object was created.

www.manaraa.com

13

The LocationManager class provides access to the system location services. The

LocationManager class is used by applications to obtain updates of the device’s

geographic location and it is used to access the location providers. The

LocationManager is used to register location update listeners and notifies the device

when the location of the device changes.

The LocationProvider class is a superclass of different location providers which

deliver information about the current location. There are three different types of location

providers: network, GPS, and passive. The network provider uses the mobile network

signal or Wi-Fi to determine the device’s location. The GPS provider uses the GPS

receiver in the mobile device to determine its location via global positioning satellites.

The passive provider is a special location provider for receiving locations without

actually initiating a location fix by providing locations generated by other providers.

In addition to modifying the Android Location classes, the File Java library was

modified as well. Whenever a file is created, a message will be sent to logcat via the

System.out.println call of Java. The filename will be printed along with the filepath if it

is known. This allows the analyst to see any files created when an action is taken on the

emulator.

Finding location data

 The process to find location data is fairly simple using this tool. Once you have

made the emulator, start the emulator and unlock the device. Next, you must install the

desired APK to the emulator. To install an application, simply type ‘./adb install

www.manaraa.com

14

<location of APK>’ without the quotes and brackets. A terminal window will be

brought up and tell you the results of the installation process. If the installation has

completed successfully, the next step is creating a fake location for the emulated GPS on

the emulator. This is accomplished by using telnet to connect to the emulator by typing

‘telnet localhost <port number>’. The port number is displayed at the top of the window

of the emulator and is typically run on port 5554. When the telnet connection has been

established, the command ‘geo fix <longitude> <latitude>’ can be entered to give the

GPS a fake location for the device where longitude and latitude are the coordinate values

the user desires. Once this has finished, go to the emulator and start up the application.

The user should then interact with the application in such a way to cause the location

API to be called.

Anytime the GPS module is used by an application, a message will be output to

the emulator’s terminal via logcat. The most important message comes from the

LocationManager stating what the provider and current coordinates of the phone is

according to the device reporting the location. Any subsequent files created shortly after

Figure 5. Modified logcat output from the Android emulator for Google Navigation

www.manaraa.com

15

the GPS has been updated has a potential to contain location data. In most cases, files

which actually contain location data is contained within SQLite databases within a

database folder commonly found in Android applications.

Creating DroidSpotter

DroidSpotter was written entirely in Java. To run the tool, simply run Eclipse

and run the program. The NetBeans IDE was used to create the user interface. This IDE

allowed for quick implementation of the main window, all of the buttons, JTree, and

FileChoosers for the tool. The design for the user interface is fairly simple. The list of

APKs are in the far left in a file directory structure and only contain APKs on the

selected image. Any location data on the APK will be loaded in the center portion of the

screen when the APK is selected in the JTree on the left.

This forensics tool stores all of its data in a basic SQL database. This database

has many columns and certain columns are not currently necessary but are placeholders

for future work. The first column is a unique integer identifier, created for a primary key

Figure 6. GUI for DroidSpotter created with NetBeans

www.manaraa.com

16

and to ensure each row is unique. The next column is the application name – the real

name of the application as it would appear on the device. The application version is

stored in the next column, in case future versions of an application behave differently or

store location data in a different file. The data type is another column included in the

database. This column is used to denote what type of information is stored in the file.

Currently, this column will always be “Location” since this research is only concerned

with location data. In the future, there may be other kinds of data stored in this database.

Data location is where on the image the information is stored relative to the image.

Partition name column states what image the data is stored on. Notes is a column

used by the creator of the entry to add details the analyst may need to know about the

data. The app location column is used to maintain where the application file is stored

relative to the data partition. APK location is a column denoting where the APK is being

stored for the purpose of the database. All of the APKs analyzed during this research are

including on the hard drive of the virtual machine. These APKs can be installed to the

emulator and can be of use to those who may not possess an Android device. The

apkName is the column that states what the name of the APK file is when it is found

natively on an Android device.

In order to mount the images specified in the UI of the tool, the sudoers file was

edited to make it so the mount command does not require a password. This is done by

using the visudo command to open the sudoers file. The NOPASSWD option is then

added to the commands needed, in this case the mount and find commands. The find

www.manaraa.com

17

command is added to ensure when searching for APKs in the images that no files are

excluded due to permission issues.

Once the sudoers file was modified, bash scripts were created for each image to

assist in mounting the image. Each partition has a dedicated folder to be mounted on:

sysdir for system, userdir for userdata, sdcarddir for the SD card, and cachedir for the

cache image. The script tests to see if an image is currently mounted in the directory for

the partition. If there is an image currently mounted, it is unmounted and the new image

is mounted to the directory. Otherwise, the image is simply mounted to the directory.

The names of these scripts correspond to the image being mounted: system.sh,

userdata.sh, sdcard.sh, and cache.sh.

With the image now mounted, the tool recursively searches for any application in

the subsequent folders. A file is determined to be an application based on its .apk

extension. All APKs are placed into the image’s folder in the JTree on the left side of

the tool’s UI. The APKs are represented by their filename, also known as the APK

name in the database. When an APK is selected in the JTree, the APK file is found in

the hard drive via the find command. The SQL database is then queried based on the

APK name and version. If the database contains any results for the selected APK, they

are populate in the table in the middle of the screen. No data for the APK in the

database will result in the table being cleared. Once the results are populated in the

table, the user can double click on the entry in the database and the file will be opened

with its default application as determined by the operating system of the virtual machine.

www.manaraa.com

18

CHAPTER IV

CASE STUDIES

The main point of this research was to create DroidSpotter and have it be able to

successfully identify new data for forensic investigators. In order to ensure this was

accomplished, several different Android applications were analyzed. Applications were

examined by attempting to use them in a way which caused the Location API in the

Android operating system to be called. If the application caused the Location API to be

used, any subsequent files output by the emulator were investigated for saved location

data. The more interesting applications will be discussed in detail here.

Twitter

 To analyze the Twitter application, a tweet was created with a photo attached to

it taken by the camera provided by the Android operating system. This tweet was then

sent out using the application. My personal Twitter account was used to create and send

out the tweet. The database file 23229968.db was found after sending out the tweet.

This database contains several different tables, the most interesting of which is ‘statuses’

as shown in Figure 6. This SQLite file shows the most recent tweets in a particular

user’s feed with a wealth of information about the post such as a UNIX timestamp for

when it was created, what application was used to send the tweet, the unique ID for the

author of the tweet, and if the user had location data enabled for Twitter, a longitude and

latitude of the user’s device. Inside the application’s cache folder, there is a dedicated

www.manaraa.com

19

photos folder. This folder contains any photos associated with the Twitter account. If

the photos are taken with a GPS camera, they may contain location data in the EXIF

geolocation tags.

Google Maps

 There are several applications associated with Google Maps such as Google

Navigation and Google Local. The Google Navigation application was used to discover

the location data files in this research. The data was created by searching for directions

to a nearby location. A file named da_destination_history is a SQLite database

Figure 7. My personal Twitter account’s SQLite database - 23229968.db

www.manaraa.com

20

containing the records of any locations the user requested the application for directions.

The destination_history table has multiple columns which contains pertinent data. The

database has a column with a UNIX timestamp for when the searches were made, the

destination’s longitude and latitude, the source’s latitude and longitude, as well as the

name of the destination.

 Another database file named search_history.db contains any searches done by the

user. The latitude and longitude columns for the searched location are present in the

table as well as a timestamp. The device’s location can be in this database too if the user

decides to include it in the search.

 The Google Latitude application has a database file associated with it as well.

The file, google_latitude_latitudeLocations.db, has columns for a UNIX timestamp and

encrypted values for latitude and longitude. However, the decryption algorithm is

unknown and the purpose of this research is not to decipher Google’s encryption

method.

www.manaraa.com

21

CHAPTER V

DISCUSSIONS

Due to having a finite amount of time to work on this research, there are still

many features which could be added to this toolset. The current process could be

automated to a greater extent by batch installing APKs located in the database or in a

group of folders located on the VM to the emulator. This process would make it easier

to analyze a large number of new applications in a short amount of time for location

data. It should also be possible to automate the process of a user interacting with the

application through UI fuzzing. UI fuzz testing has been done to test operating systems

by the University of Wisconsin Madison such as Windows NT and Mac OS X. This

process should be possible on the Android emulator and could generate random input to

attempt to output location data. This process could be hindered by applications which

require login credentials however.

This type of analysis could be extended to other types of data available through

the Android API. There are several other Android and Java classes which could be of

interest to a forensics analyst like contacts, SQL calls, URLs, HTTP request, calendar

data, and more. However, this functionality is outside the scope of this research since

we are solely concerned with location data.

Of course, more files containing location data for the database would always be

an improvement. No paid applications were analyzed during this research since there

was no outside funding or grants to pay for these applications. Old versions of APKs are

not officially supported by Google and therefore are difficult to find. It is possible to

www.manaraa.com

22

find these APKs on third party websites around the internet but the integrity and

legitimacy of the APKs is questionable at best. The best option is to crowd source the

database and have the public contribute any old APKs they possess on their phones for

research purposes.

Another interesting idea would be to create a visual timeline of the location data

present on all of the images currently being analyzed. This would be fairly simple to

implement since all of the data encountered so far have coordinates and UNIX

timestamps. Assuming all the images were from the same phone, this visual timeline

would give the forensics analyst an idea of the past behavior of a suspect using the data

generated from this tool. Google Maps could be used to create this visual representation

of the data but Google does not allow their Google Maps API to be used in applications

which are not “publically accessible”.

www.manaraa.com

23

CHAPTER VI

SUMMARY AND CONCLUSION

As shown by this research, location data is stored on Android devices by many

applications. The increase in applications using location data will make finding this

information on a suspect’s device more valuable. It seems highly plausible a timeline of

a person’s whereabouts could be created from this information and used in an

investigation. It is also incredibly important an investigator finds this information in a

timely fashion. This is the reason why the emulator is a vital part of DroidSpotter. The

emulator allows the investigator to easily find location data for newer applications which

may have never been analyzed before. The forensics community could assist with

finding more information with this tool and create a vast database of forensic

information which would be invaluable in helping catch criminals.

www.manaraa.com

24

REFERENCES

1. "ComScore Reports March 2013 U.S. Smartphone Subscriber Market

Share." ComScore, Inc. ComScore, Inc, n.d. Web. 06 May 2013.

<http://www.comscore.com/Insights/Press_Releases/2013/5/comScore_Reports_

March_2013_U.S._Smartphone_Subscriber_Market_Share>.

2. "Android Statistics - Development over Time." AppBrain. AppBrain, n.d. Web. 17

May 2013. <http://www.appbrain.com/stats/number-of-android-apps>.

3. "Android Architecture." ELinux.org. ELinux, n.d. Web. 17 May 2013.

<http://elinux.org/Android_Architecture>.

4. Raja, Haroon Q. "Android Partitions Explained: Boot, System, Recovery, Data,

Cache & Misc." AddictiveTips. AddictiveTips, 19 May 2011. Web. 17 May 2013.

<http://www.addictivetips.com/mobile/android-partitions-explained-boot-system-

recovery-data-cache-misc/>.

5. "Mobile Phone Examiner Plus." AccessData. AccessData Group, Inc., n.d. Web. 17

May 2013. <http://www.accessdata.com/products/digital-forensics/mobile-phone-

examiner>.

6. "ViaExtract." ViaForensics. ViaForensics, n.d. Web. 17 May 2013.

<https://viaforensics.com/products/viaextract/>.

7. Chen, Sheng-Wen, Chung-Huang Yang, and Chien-Tsung Liu. "Design and

Implementation of Live SD Acquisition Tool in Android Smart Phone." IEEE Xplore.

IEEE, n.d. Web. 18 May 2013.

<http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6042741>.

www.manaraa.com

25

8. Grover, Justin. "Android Forensics: Automated Data Collection and Reporting from a

Mobile Device." Rochester Institute of Technology. Rochester Institute of Technology,

n.d. Web. 17 May 2013.

<https://ritdml.rit.edu/bitstream/handle/1850/15949/JGroverThesis1-31-

2013.pdf?sequence=1>.

9. "Welcome to Android." Android Open Source Project. Google, n.d. Web. 06 May

2013. <http://source.android.com/>.

	2013
	DroidSpotter: A Forensic Tool for Android Location Data Collection and Analysis
	Jeffrey Alan Kramer
	Recommended Citation

	

